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It is well known that problsmo of dynamics of a rotating fluid have a series of specific 
pecnlisrities and present significant difficultiam. In recent years equations of motion of a 
rotating fluid have bean investigated in papers of Sobolev, R.A. Aleksandrisn, S.G. Klein 
and others. Motion of a symmetrical top with a cavity filled with au idesl fluid was studied 
in the paper of [ l] and sabse~ently (by a different method) in [Z]. Theorems on stability 
of motion of a solid bod 
other authors (see book f 

with a cavity filled with fluid were proved by Rumiantsev and 
31, which contains a bibliography). A number of papers, for cxsm- 

ple 14 to 61, is devoted to the analysis of motion of fluid in a cavity of a solid body execu- 
ting a prescribed motion: uniform rotation or regular recession. The general problem of 
motion of a body witb a cavity filled with a viscous R 
of high viscosity fluid and in [a] for th 

nid was examined in [y] for the case 
e 

body executes small oscillations. 
case of low viscosity under the condition that the 

In this paper the motion of a nolid body with a fluid-filled cavity is examined under the 
following assumptions. Diatrlbntion of masses in the body and the shape of the cavity are 
considered arbitrary, the fluid is ideal or has low viscosity. The motion of the body with 
the fluid is assumed toabe close to uniform rotation around an axis. One property of natural 
oscillations of the liquid rotating in the cavity is established. Special solations of linear- 
ized equations of rotational motion of an ideal fluid are brought into the investigation. 
These solutions depend on the shape of the cavity and are analogous to Zhukovskii’s po- 
tentiala for the ease of inotational motion. It is shown that through these solutions the 
angular momentum of the system is expressed by meana of some tensors ln the case of an 
ideal fluid sad also in case of a fluid with low viscosity. Some concrete shapes of cavi- 
ties and particular cases of motion are also examined. The characteristic equation for 
oscillations of a rotating free solid body with a fluid-filled cavity is obtslned and in some 
cases analyzed. 

1. Bamis equations. Let us examine the motion of a solid body with a cavity D 
filled with an incompressible fluid of density p and kinematic viscosity v. NavierStokes 
equations and boundary conditions are written in the system of coordinates 0~~~~x3, which 
is rigidly connected with the solid body 

we+(~) x (tu x r) + 3 x r + 2a, x V + dV / dt + (Vv)V= - p-lap + vCJ--+-~AV 
divV=O inD, V=O . (V+n=O for v=O) 0nS (1.1) 

Here f denotes time, r is tbe radius vector with respect to point 0, V’is the velocity in 
the system of coordinates Oxtxsxs, P is the pressure, U is the potential of mass forces, 
We is the absolute acceleration of point 0, o is the absolute angular velocity of the body, 
o is its angular acceleration, S is the boundary of region D, tt is the unit vector of the in- 
ternal normal to S (Fig. If. In the case of ideal fluid the uo-slip condition is replaced by 
the condition of no flow. 

We shall write the angular momentum K of tbe body with fluid with respect to the center 
of inertia 0, of the entire system 

K=J.e+pSrxVdv (J = J (1) + J9 

D 
(1.2) 
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Here J is the inertia tensor of the entire system with respect 

to point O,, composed of the tensor of inertia of the body J(l) 
and the fluid J(2) with respect to the same point. 

The second term in Eq. (1.2), called thr hydrostatic moment. 

does not depend on the selection of the pole and may be compu- 

ted with respect to point 0. The equations of moments with res- 

pect to point 0, is written in the system of coordinates 0rlz2r3 

K’+oxK==RC (1.3) 

Here the dot denotes a derivative in the system 0zlzZr3, M 

is the principal moment, with respect to point 0, of all external 
forces acting on the body with the fluid. 

Eqs. (1.1) to (1.3), together with the usual equations of motion 
of the center of inertia, kinematic relationships and initial con- 

ditions fully describe the dynamics of the body with the fluid. 
Let the unperturbed motion of the body with fluid with respect 

to the center of inertia 0, be a rotation of the whole system with 
constant angular velocity 0 
through the point 0, paralle P 

around the axis 0,~ which passes 

Fig. 1 
to axis 0~~. We shall examine the 

perturbed motion assuming that its deviF,tions from the unperturbed 

motion are small and proportional to e where X is a complex 

nnmber. Let us assume 

0 = o. + !Jext, 0’ = hW’, o. = woe3 ((do > 0) 
V = e+ P = p [U - wo. r + 1/z (0 x r)2] + p+ 

Here e3 is the unit ve:tor of axis Ozg, 

(1.4) 

coordinates x~,.x.~, x , 
52 is a constant vector, v and p are functions of 

pressure. Qnantltles 8, 
where all potential terms in Eq. (1.1) are taken with respect to 
V and p are considered small of the first order. 

Substituting Eqs. 11.4) into Eqs. (1.1) to (1.3) and discarding small terms of higher or- 
der, we obtain the basic Eqs. in the form 

~SZX~+~~~XV+~V=-_P+VA~, divv=O in D 

v=o (V-n = 0 for v = 0) on S (1.5) 

K= J.aO+eXt(J.Q+G), G=pSrxvrlv 

cuox(J.oO)+eatIh(J.S2+G)+Rx(J.00)+”O~(J.~+G)1 =M (1.6) 

Withont destroying generality we select as the unit of time the characteristic time of 
rotation of the body T * l/o,, as the unit of length the characteristic dimension of cavity 
1 and as a unit of mass the mass of the entire system m. Then the ratio of the mass of fluid 
to the mass of the whole system has the order of magnitude pl 3/m = p , while the Reynolds 
number is equal to 15-tP1 = v-1. Th e quantities p and v may be considered nondimension- 
al parameters. 

2. On natural oscillations of the flnid. If the motion of the liquid is pres- 
cribed, the quantity x and the vector n are known. Determination of the motion of the liquid 
is reduced to a boundary value problem (1.5) for functions v and p. The solution of this 
problem is unique if and only if x is not a characteristic value of the homogeneous problem 

2uoxv+hv=--_p+vAv, divv=O in D 

v=o (v-n=0 for v=O) on S (2.1) 

Eqs. (2.1) describe natural oscillations of the fluid in a uniformly rotating vessel. 
We shall prove that in the case of a viscous fluid all characteristic values of problem 

(2.1) are located in the half-strip IIm A[ \( 2 oo, Re A ( - CV, and in case of the ideal 
fluid (V = 0) on the section Reh=O, 1x( & 20,. 
on region D. The bounda 

Here C > 0 is a constant depending only 
S is assumed to be sufficiently smooth in this case. The formu- 

lated statement is known l] and [6] for the case of ideal fluid. 7 
For the purpose of proof the first Eq. of (2.1) is scalarly multiplied by V* (the asterisk 

denotes complex-conjugate values everywhere) and the following Eqs., which are valid by 
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virtue of the second Eq. of (2.0, are l abstituted into it 
v+Vp = div (pp’), v*Av = div (v* x rot v) - I rot 0 I* 

Snbssqaently ws integrate the aqsation obtained over the region D. lntsgraba of direrc 
gent terms become zero as B rasalt of boundary condition (2.1) and we obtain 

?ooS%*fvxvr)dv+LSIvjPda+ir 1 rotvj*dv=0 (2.2) 
I) D d 

Temporarily, let us designate by R and b the real and imaginary parts of vector V = D + 
+ i b. Then we have 

v x v* =(s+ib)x(a-ib)=-2i(axb) 

ler ~~~x~L~l~~t~x~l~~l~I~I~I<i~Ia~+lbI*~Iv~a (2.3) 

Separating in Eq. (2.2) th e real and imaginary parts and using the first Eq. of (2.3) we 
obtain 

Reh lvl%o 
!i 

r= --v Irotvj’do, 
s 

fmk 
s 

lvlWlt=kbo e&axb)& (2.4) 
I) D d 

Let h be tie eigenvalne of problem (2,1), v the eigenfunction corresponding to it (its 
norm is positive). Then, using inequality in (2.3), we obtain from the second Eq. of (2.4) 
the desired evaluation )Im xl ( 2 os, which is valid for both the ideal and the viocoas 
fluid. In the case of ideal fluid (VP 0) it followo immediately from the first Eq. of (2.4) that 
ReX= 0. In the case of a viscous fluid we utilize the following inequality [9]: 

which is valid in case of sufficiently smooth boundary S of region 17, when div v = 0 in D 
and the tangent to surface S of the component of vector v becomes zero on S. These con- 
ditions are satisfied in the case of a viscous fluid (see (2.1)). The constant C > 0 depends 
only on region I). In [9] the inequality (2.5) is proved for real vector functions, however it 
is apparent that it will also apply (with the same constant C) to complex vector functions. 
Applying inequality (2.5) to the first Eq. of (2.4) for V> 0, we obtain the desired inequal- 
ity Re A,< - CV for the viscous fluid. In this manner all natural oscillations of the rotat- 
ing viscous liquid in the vessel decay not slower than exp (- Cvt). 

3. Ideal f lo id. Let x be fixed and lie outside the section Re h- 0, 1x1 < 20 , where 
all the characteristic values of problem (2.1) are located. Then neither A, nor (- A? are 
characteristic values of problem (2.1). Ve shall show that the solution of the hydrodynamic 
problem and the vector Q entering into equations of motion of the body (1.6) can be expres- 
sed through some universal functions. In Section 3 this problem is solved for an ideal fluid 
(superscript0 at V, p, Ci refers to the ideal fluid), in Section 4 it is solved for a fluid with 
low viscosity. 

In case of ideal fluid, Eqs. (1.5) have the form 

2co* x v* + hv” -+ g = 0, divv”=O in p 

V’*Et=O on S, gzhQxF+vp” (3.X) 
The first Eq. of (3.1) is solved with respect to v9 

by.@,, gives 
Scalar and vector pre~ultipiication by 

J&J*VO + 00.g = 0, 200(O~.V”) - 26$v” + ho0 x v” + o. x g = 0 (3.2) 
Isto the second &a of (3.2) the product 40 v” is substituted from the first Eq. of (3.2) 

and @o x V” from the first Eq. of (3.1) and then the second Eq. of (3.2) is solved with res- 
pect to vo 

v” = [ 200 x g - hg - 4h”two (us-g) J / (AZ + 4W@2) (3.3) 
Let US introduce a linear transformation L and a complex number c 

d = 26%/h, L.a=a+cr2e,(e3-a)+6(axer) 

i 

1 d 0 
L= --d 1 0 (3.4) 

0 0 1+0x i 
Rere a is au arbitrary vector, the matrix L determines the transformation in the system 
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of coordinates Oxtxtx~. Matrix L, dependent on U, has the properties 

L’ (a) = L (-a), a - (L - b) = (L’ * a) - b (3.5) 
Here the prtne denotes the transpoaad matrix, a and b are arbitrary vectors. In the nota- 

tion of (3.4), Eq. (3,3), the equation of continuity and boandary condition (3.1) take on the 
form 

v0 = - h”” (1 + cq-lL.g, g=hS2xr+T7p0 

div(L.g) =0 in@, II*(L.g) = 0 onaS 
(3.6) 

Solution of Eqe. (3.6);an be presented in the form 

p” s - h z QjcPjv V”=&2i QjL.(VCPj-ejxr) (3.7) 
j=l j=l 

Here e. are unit vectors of axes 0x1, Sa, - O-et fire projections of vector 0 on these 
axes, while functions cpj satisfy linear boundary value problems (3.8) 
div[La(V~l-ejxr)]~O b,fl, n.[L.(Vrpj--ejxr)]=O on S’ (i=iJ.3) 

Sabstituting Expression (3.4) for L, Eq. (3.8) can be written in the form 
A~j + 6’ (a’~~ I aX3a) - 266j, = 0 in D (i = 1,2,3) (3.9) 

Here A is the Laplace operator with respect to variables xt, x2, ~3 and 8,, is the 
Kronecker symbol. Substituting V’ from (3.7) into Eq. (1.6) we obtain for a 

G” = pI”.fz = p 2 i?jIjk?Jk, 
j,k=l 

Ijk” = ,-?-.:S U(ejxr).[L.(~rP~-ekxI)]clrt 

(j, k=l. 2, 9) 
(3.10) 

Here I0 is a tsnaor, Ilk0 are its corn 
1 

onsnts 
this mauer the determination of v’, p 

in the system of coordinates 0r1z2%3. In 
and Q” is reduced to the solution of boundary value 

problems (3.8) and to computation on integrals (3.10). Reletionnhips (3.10) can be given a 
different form if functions qj’t are introduced into the investigation and these functions 
satisfy the boundary conditions 
div [L’.(Vqj’--ejxr)] = 0 in t), ll.[L'.(vqpj'-ejx r,] ::.: O on S +(I!!~~~ 

From Eqs. (3.5), (3.8) and (3.11) it is apparent that functiona (p_,’ for some value of o 
are eimnltancoasly functions of vj for the value (- 01. From these same equations, iden- 
tities follow which are valid for any function f 

of. [L’+(ej x r)l = Vf*IL’*(Vqj’)] - div [fL’*(Vcp,‘- ej x r)] 

~*[L’o(ej~r)l~~ = \Vf.IL’~(VqJ’)ldu (3.12) 

‘u 
Application of the second identity of (3.5) and tbe second identity of (3.121 to integrals 

(3.10) for f- (~a, we obtain 

IjR* = Yf&S 1 07%. t~*(Wj’)l - (ek X r)sIL'-(ej x r)]> flu (i, k = I, 2, 3)(3.13) 

Functions qJy cpi’ and tensor I0 depend only on the shape or the cavity and the value 
of cr. From Eqe. (3.5) end (3.13) it follows that 

Ij** (- 6) = l&ej” (a) (j, k = 1, 2, 3) (3.141 

Let functions vj and tensor I0 correspond to some a. Applying to Eqs. (3.8) the oper- 
ation of complex conjugation we obtain that functions Cpj* correspond to the value U* 

ljRO (@) = [lj$ (Q)]’ (i,k=1,2,3) (3.151 
If 0 is real (a+ = CI) then it follows from what was said before that all functions Cpj and 

components of the tensor I0 are real in this case. If on the other hand o is a purely imagin- 
ary number (a+ = - a), then by comparing Eqs. (3.14) and (3.15) we obtain 

~Ijk”(6)]*=f~jo(6) for Rea==O (i,Ic= 1,2,3) (3.16) 
In case of irrotational motion (0 

! 
= a= 0) operators L and L ‘ from (3.4) and (3.5) turn 

into unit operators. In this case pro lems (3.8) and (3.11) for functions cpj and Cpjf trana- 
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form into problems of Neumann for harmonic functions which are called Zhnkovskii’s PO_ 
tentials for s given cavity (4, It follows then from Eq. (3.13) that for u = 0 with WCW~CJ’ 
to a factor of p the tensor 1’ is eqnal to the .differsncs between the tsnaor of apparent ad- 
ditional masses and the tensor of inertia for the given cavity (with respect to point 0). 

4. Viscous f la id. Solution of problem (1.5) for the case of a fluid of low vimcomity 
t by the boundary layer method which has repeatedly been applied in aid- 
to 6 and 81). We assume (the superscript indicatem the order of approxima- 

tion) 
v = (v” ‘f v’:’ vl + . ..) + w, p = (p” + v”’ p’ + . ..) + q (4.1) 

We shall require that sums within parenthesis in Eqs. (4.1) satisfy (without termm W and 
Q) the Navier-Stokes equations. Substituting these sums into Eqa. (1.5) and equating terms 
with equal powers of v we obtain for v” and p” Eqa. (3.1) and for Vt and p 1 Eqs. 

20, x v1 + hv’ = - Qp’, div v1 = 0 (4.2) 
Analogously we may write equations also for the following terms of expansions (4.1). 

Considering terms w and q, for functions V and p to satisfy Navier-Stokes equations, it is 
necessary to require that 

2~,,xw+hw=--vq+vAw, divw =0 
The functions w and q are alao considered as expanded in powers of v g 

(4.3) 

w=wO+Y1’++.~., q = qo + v’.“ql + . . . (4.4) 

where the coefficients of expansions are functions of the boundary layer type which rapidly 
tend to zero outside the boundary layer region D,. The region D, adjoins the walls S and 
has a thickness of the order v 3‘ 

The boundary conditions for coefficients of expansion (4.1) and (4.4) are obtained by 
the following recursion method. The functions V’ and p” are subjected to the condition 
V”* II = 0 on S, then they coincide with solution (3.7) for the ideal fluid. The condition 
( WojT= - V” on S is placed on functions W” and q” and also wO+ 0, q”+ 0 outside the 
rereo; D . Index T denotes projection of the vector on the plane which is tatgent to the aur- 

. I%nctions V t and p are anblected to the condltron v Hv~ l n 3: - w . II on S; In 
general, in the k-th approximation fnnctions ok and pk must compensate for the discrepancy 
in eatimfying the boundary condition v l II = 
of expanmions vt and ~1 (i = 0, I,..., 

0 on S, which was caumed by preceding termm 

k - 1). Functions wk and qk must satisfy conditions 
w * + 0 and q* + 0 outside of the bonndary layer D, and compensate for the discrepancy in 
satisfying the condition V, t 0, which arises due to fanctions v k, v * ad w f for i = 0, 1, 
. . . . k - 1. Witbout examining questions regarding the mathematical bade of expansions 
(4.1) and (4.4), we note that the boundary layer method was applied to hydrodynamic prob- 
lems leading as a rule to phymically correct results. For one problem of flaid motion in a 
cavity of a rotating solid body the agreement of remults from calculations b$ the boundary 
la 

d 
er method with experimental data is noted in [S]. In the following, in addition to v” and 

p the terms VI, p 1 emi W” and q” will aleo be taken into acconnt. These terms will be de- 
noted simply by w and q. In the region of boundary layer D, we ahall introduce curvilinear 
orthogonal coordinates [, T), 4 in such a manner that c= 0 on the surface of walls S, In 
this case L> 0 in the region D,. 
these coordinates, and H 

Let we, wtl and WC be the components of ve?tor woin 

and& o are the values o f ’ 
Htl and H i the correm 

these coefficients for P 
onding coeeficients of Lame, Hf , 
= 0. 

HT ’ 

*tit Wl out destroying generality it is assumed that Hc” I I, then 5 is the diatanoe along 
the normal tt from the surface S. 

In Eqs. (4.3) we pass to coordinates t, 7, ( and then make a substitution of variablea 
5 = y’/*a, 

WY = $ltUlo, (4.5) 
and in the eanationa Pass to the limit for v + 0. We obtain 

(4.6) 

_ 

U‘L, U’5,. UT,. q-0 for a _.+oo 
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Rerc the boundary conditions for w and q indicated above sre also written out. The two- 
dimensional divergence operation with respect to variables t and q is denoted through Div 
for two$men@onal vector fields on the anrface S, ws isoa vector with components we, u~r) 
and ug , VT, are corresponding components of vector v where VI = 0 on S by virtue 
of condition v” - II = 0. From the third Eq. of (4.6) it follows that q is independent of a. 
Taking into account the boundary condition for a = 00 we obtain q 2 0. Then the first two 
Eqs. of (4.61 transform into a system of two ordinary linear differentiul equations of second 
order with constant coefficients. In these equations the role of the argument is played by 
a while [ and W on which tt is dependent, enter as parameters. The solution of this fourth 
order equation with two bonndary conditions (4.6) for a = 0 and with two conditions for 
a = w has the form 

WE = - 1/z (up + iu,,O) El - I/% (VE’ - iv,“) Es 

Ek = exp (~~31) = exp (p&v-‘b) (k=1,2; (4.71 

As pt and 1f2 thorn bruwhaa of the root arc taken for which Rc h ( 0 for k = 1, 2. 
Valaca pl and p 

The solution t 
depend on the point of the surface S. 

4.7) can be written in vector form 

w+ = -‘/avo (Et + Eu) --If& (v” x n) (E, - Ed U3) 
Taking into account the notation in (4.71, we snbstitnta solution (4.8) into the fourth 

Eq. of (4.6) and intc(lratc it with respect to a with the boundary condition os = 0 for a = (10. 
Then we obtain function tosand from equation (4.5) also wt in the form 

WC = l/av’~~ Div [(PI-“& + ps’lEa) v” + i (~I-‘& - ps1E2) v“ x II] (4.9) 
Eqs. q = 0 and (4.7) to (4.9) completely determine the functions W and 

for A I 1, 2, then the functions W, and tat decrease rapidly (exponentially P’ - 
if Re/+ < 0 

4. Outride the boundary layer D,, i.e. for 5 > u +% 
with inorcasing 

it is permissible to set w I 0 with an 
error smaller than any power of V. If however Rep = 0 or Rap2 = 0, then the function W 
doas not decrease with increasing distance from I, t e walls of the cavity, which destroys the 
initial assumption of a boundary layer. This will occur, as fallows from Eqs. (4.71, onder 
conditions 

Reh*=O. Imh= + 200n43 (4.10) 
If x doss not lie within the half&trip ReX,< 0, Iii4 ( 200, for which it is known that 

it contains all cigcnvalucs of the problem (see Section 21, then conditions (4.101 are not 
satisfied for any II and the boundary layer will not have singularities anywhere. If however 
x is located in the half-strip indicated, then in the vicinity of some points of the walls in 
which the normal II satisfies the second condition of (4.101, the boundary layer will have a 
singularity (its thickness will tend to infinity). In case of smooth surfaces these critical 
point. form usually closed curves (for example, for a spherical cavity there are two circum- 
ferences with centers on the axis of revolution). A more detailed analysis of the solution 
near these points shows f4 and 51 that the solution here remains bounded but has a more 
complex character than in the boundary layer. In the following we neglect the influence of 
thc8e singularities. 

Functions ~1 and p 1 satisfy Eq. (4.2) and the boundary condition stated above, which, 
taking into consideration Eqs. (4.9) and (4.71, for <- 0 can be written in the form 

v1.n = - ~-5’~. n = - y’h_~~ =t - Div A on S 

A = l/s [ (pl-I + 1.~8-1) v” + i (pl-l - ps-l) v” x n] (4.111 
The first Eq. of (4.2) is solved with respect to VI and Vt is substituted into the second 

Eq. of (4.2). In the notation of (3.4) we obtain in analogy to (3.61: 

v’ = - h-1 (1 + cP)-1 L * (vp’), div [L. (vpl)] = 0 (4.121 
Without solving the problem (4.111, and (4.12) for vt and pt we can find the vector GI from 

(I.61 with an error of order (v% ). Since in the region D, with a volume O(V~) we have 
jW,.~“Qtdut~ *V H , while outside of this region we can assume w = 0, then to obtain 
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the desired accuracy we aaeame 
v=v”+w++V’~ryt 

G=GO+p 1 rxw,dv+pv’la rxvldv s (4.13) 
D.3 D 

The term Q” corresponds to vector VO and is determined by Eq. (3.10). Without 10a0 in 
accuracy integration with respect to Ds in (4.13) can be replaced by integration with CCII)- 
pect to 4 from 0 to 00 over the surface S. Sabbtitutiag Erprssrion (4.8) for UT we obtaia 
after integration with re8pact to & t&king into account expression (4.11) for A 

s rxx,dv=~~x~~w,db)ds=v”/a~=xAds (4.14) 

D, 
In the third term of Eq. (4.13) for Q weosobstitata V t from (4.12) aad axpaad tbe obtain- 

ed vector with respect to unit vectors 6, 

rxvldv= kA i ej 1 (ej x r> * IL* (C7pL)I dv 
j=l D 

Utili.~~b~ae~aacond identity of (3.5) and aubeeqneatly the second identity of (3.12) for 
f=Pl* ^ 

s r x vldv = - VP’. [L’+(Vq;)l do (4.15) 

D 

The expression andcr the integral in (4.1;) is traasformed with the aid of Eqlr. (3.5) aad 
(4.12) 
Opl. [L’ .(V~Q’)] = ~L.(Vpl)] .Vrpj’= div [tpiL.(t#)]=- h (%+ a’) div (cpj’vl) 

The obtain&f relationehip is eabsti&ted into E& (4.15) and the theorem of Gaaas&tro- 
gradskii and boundary condition (4.11) are applied 

s rx+dv= i ej$cpj’DivAds (4.16) 
D j=l S 

We note the following identity which applies to any vector-function a and scalar fanc- 
tion f 

f Div a = Div (fa) - a l Grad f = Div (fa) - a * (of - n 8f / h) (4.17) 
Here Grad is the operator for taking the gradient along the aorface S [lo]. For any vet- 

tor field b given on a closed surface S, the following identity is valid 

8 Divbrls= 0 
Q (4.18) 

which follows from the theorem of G~~~=~*tro~adakii for vector fielda on the sorfacs [lo]. 
Identity (4.17) for O= A and f= qj’ aad identity (4.18) are appfied for transformation of 

integral (4.16). We also note that from boondary condition (3.1) and Eq. (4.11) for A it fol- 
lows that A. II = 0 on S. Then integral (4.16) takes the form 

s 
rxv’dv=-i ej$Vq{*Ads (4.19) 

D j=l S 
Sobstitating Expressione (4.14) and (4.19) into Eq. (4.13) and decomposing the vector 

rx A with respect to coordinate axes we obtain with accuracy to mmall terma of higher 
order : 

(4.20) 

Into Eq. (4.20) we sub&tats vectors A from (4.11) and VO from (3.7). Finally we obtain 

G=G*+Gl, Gl = pv*fQ” . f): = pv” ; ejljalQk. 
j, 1[=1 
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l.l=- 1 
3k $ 2 (I + @) s 

(V~j’-ej xr).{@iM1 + ~Ls-~)L.(VO~- 

- ek x r) $- i (111-l - pLa_‘) lL’ (v(Pk - e,+ X r)] X n} dS (i, k = 1, 2, 3) (4.21) 

Here It is a tensor, Ilk t are its components in the system of coordinates Ox x 
tions p t and /J td” 

J,fnnc- 
are determined by Eqs. (4.7). The values of I k t and also of Ijk from 

(3.10) and (3.131 d epend only on the shape of the cavity and t b e value of Q. Since the vec- 
tor Q is independent of the selection of point 0, tensors I0 and I* also have the same pro- 
perty. It is sufficient for their determination to find functions Cpj and Cpj’, which satisfy 
the boundary value problems (3.8) and (3.11) and are related to the motion of an ideal 
fluid. From Eqs. (3.10) and (4.21) it follows that 

G = ~1.52, I=I”+v*/lJ (4.22) 
The velocity and pressure of the fluid are determined by Eqs. (4.1), where functions V” 

and p” are given by Eqs. (3.7), w is determined by Eqs. (4.7) to (4.9), q = 0, and V1 and p 1 
satisfy the boundary value problem (4.11). (4.12). This problem, just like problems (3.8) 
and (3.11) for functions Cpj and cpj’has a unique solution if x lies outside the section 
/t-,X,=lvS [A(\< 20,. In th is case u, according to Eq. (3.4), lies outside the set Rea= 0, 

Let functions Cpj and Cpj’ be known for the perscribed shape of the cavity (in a unique 
or even nonunique manner). Then from Eqs. (3.10), (3.13), (4.21) and (4.22) we may compute 
the tensors I’, It and the vector Q, and then by means of Eqs. (1.6) we may examine vari- 
ous dynamic problems of a body with a fluid. 

We note that tensors I0 and It as functions of a complex parameter (I can have singu- 
larities only for Reo= 0, ( (I( > 1 and also for u = 0, i.e. for x = 00. 

If constant rotation is absent (oo = a= 0), then solutions of Section 4, as can be read- 
ily verified, transform into corresponding results of [S] w h ere oscillations of a nonrotating 
body with fluid were examined. 

5. Particular shapes of cavities. As examples we shall examine functions,cpi 
and tensors I0 and It for ellipsoidal and spherical cavities. 

1. Let x3 be the axis of symmetry of the cavity, i.e. it follows from the fact that if 
point (xi, x2, x3) lies on the surface S that point (-x , -X 
difficult to see that in this case the solutions of prob ems 3.8) have the following proper- r t 

, -x3) also lies on 3. It ia not 

ties in D : 

qj (- X1, -1’2, X3) ’ - qj (X1, X:,3 d‘s). (r3 (- -(‘I, -x2, r3) = (p3 (% x2, 53) 

(I' = 1,‘) (5.1) 
Functions vi’ have the same properties. It follows from (3.10). (4.21) and (5.1) that 

ISjO m= Ij:,o ~.. ZSj’ = Ij31 = 0 (j -= 1,“) (5.2) 
i.e. the axis .xj is the principal axis of tensors I0 and I’. 

2. Let the walls of the cavity form an ellipsoid 

xi2 I ai2 + xx2 I az2 + x3” I a32 = 1 (5.3) 
Functions ‘pj are sought in the form (analogous solutions for an ellipsoidal cavity are 

known [ 11 and 31) 

'pl = (h,% + b2xd X3? 'Pa = @WI + &4%2) x31 (~3 = b,,G + b33x2 + $i,xlx, (5.4) 
In this case Eqe. (3.9) are satisfied for j = 1, 2, while for j = 3 we obtain from Eq. (3.9) 

b,, + b, = o (5.5) 
Into boundary conditions (3.8) let us substitute the components of normal tt to the sur- 

face of the ellipsoid (5.3), Expression (3.4) for L and functions (5.4). Then these condi- 
tions transform into homogeneous polynomials of second degree with respect to coordinates 
x,. Equating to zero coefficients of these polynomials we obtain after simple transforma- 
tions 

bll + ahi:! + o 

a13 

+ (1 + ax) bu = blz + 1 - abn + (1 t a’) (blz - 1) = 0 

ba- 1 + abzz 

a? 

+ (I $) ‘:I +I) _ +;i + c + (I?$) brz = O 

2b31 + cjb33 “” Q = 0, 2bs,--sb,--s==O 

(bss ; 1 + 25b32) / a12_+ (bss - 1 - 2abad / az’ = 0 
(5.6) 
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Solving the first two linear Eqs. of (5.6) with respect to b, 
with respect to b,, and b,, 

1 +L--__ 
a14as2 a2*asa 

1 +a?) 2a 

as4 I’ 
bi2 xx _ ___ 

a22a$N 
(5.7) 

bal = 
dual ‘aal (I,:! _ d2? 

aI2 + a22 ’ bsz = aI2 + azp ’ bg3 = .B al- + a$ 

N= 

Coefficients (5.7) also satisfy condition (5.5). Eqs. (5.4) and (5.7) determine functions 
‘Pj for ellipsoidal cavity. Functions T’j’ are obtained from Eqs. (5.4), if in Expressions 
(5.7) u is everywhere replaced by -_o. The solutions found exist for all u for which N f 0. 

Substituting Expression (3.4) for L and (5.4) for ‘pl into Eq. (3.10) for Itto, we obtain 

111’ = &a 1 [(ohri - blx - 1)~~ + (1 + ~2)b~mq +(I.+ W(b12 - 1) 522]dv 

Integrating over yhe volume of the ellipsoid and substituting Expressions (5.7) for blk 
we find Itlo and analogously also the other components of tensor I . After simplifications 
we obtain 

zllo = _ r (a? + a~3 7 (aa” + aa2) Ta 
al2a$N ’ 

Za2’ = - a22a82N ’ 
j210 zz - IIZO = - 

a$N 

maa2z 16rtala~as 
I.&” = - ~ 

ala + a22 ’ 
1 ?=z.“=o 

33 13 -r= 15 , i= I,2 
(5.8) 

Here N is determined by Eq. (5.7). 
In case of irrotational flow (B = 0) Eqs. (5.4) and (5.7) give 

qi = qi = a22- ‘aa Z&Q 
aaa + as% 

and analogously also for cpa and ‘pu, which coincides with the known expression of Zhukov- 
skii’s potentials for irrotational flow in an elliptical cavity [3]. 

For u = 0 it follows from Eas. (5.8) and (5.7) for N that . 

Zu" = Jll" -J1{, J 
r ( aa1 - a212 

11” = 4 (as2 + asa) ’ 
Jll, = 7 (a2 + aa 

4 (5.9) 

Analogous e 
*4 

nations (with cyclic transposition of indices) are valid for f o and fas” 
when o = 0, whr e the remaining components of tensor I0 in this case are eqna to zero. ‘f 
HereItt’ andltt”, respectively, are components of the tensor of inertia and the tensor 
of associated masses for the ellipsoid [3] with respect to point 0 in the case of density 
p= 1. 

3. Let us examine a spherical cavity of radius a with center at the point 0. Assuming 
that a i = ax = a3 = 0 we obtain from Eqs. (5.4), (5.7) and (5.8) after simplification 

'p1= 
o(--ifma)% 

'p2 = 

d (- 2x3 - az1) zr o (212 + 222) 

ox+4 ’ oa+4 ’ ‘pa 2 

- 470 Ill0 = In0 = - 
2yoo 

oa +4’ 
ZBl0 = - zlxO = - 

L++4 
zs0= -_ro 

( 
yo=8$: i= 1,2)(5.10) 

Fnnctions qj’ are obtained by means of substituting o by -a in Eqs. (5.10) for ‘Pp 
4. Let us compute the tensor It for a spherical cavity of radius a. Into E s. (4.21) for 

Z k t we substitute functions qj from (5.101, p 
d 

f 
ents of the unit vector of the internal norma f 

and pt from (4.71, L from (3.4 and compo- 

change to new variabies ( and 9 
II to the surface of the sphere. Then we 

on the surface of the sphere according to Eqs. 

XI = a VI - f2 cos rp, x2=a v-sin*, x8= ac 

After transformations and integration with respect to the angle I+$ from 0 to 2n we 
obtain 
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Ill1 -52 Zd = - 
2xa4 t 

(oZ + 413 s 
ml-.-' + Pa-9 1(7@ + 4) f’ + 4 - @I + 

+ ia (PI-~ - pz’:) [ (Ba - 4) ES + (a* + 4) El 1 dC . 

Z,,l = - ISI’ = - 
4na4 L 

(@ + 4Y s 
{o &I--’ + pa-‘) [(@ - 2) c2 + 21 - 

-1 

-i (pl-1 - I.Lz-9 WE* -t (a9 + 4) e1r dS 
I 

imt = - Air4 
s 

[@I-~ + ILax) (1 - I?) + fo @t-l - ~br-*) (Es - 5)] d< 

-I 

P t,s = v-?G J&-c (5.11) 

Integrala (5.11) are evaluated in terms of elementary functions. After integration and 
reduction of similar terms we shall have 

Zrr’ = 1& = x [i (65@ + 136~2 - IS) (rl- 6) - o (25~‘ - 70~9 - 8) (R + 6) j 

Id = - lzll= XQ [i (2104 + 6ar - 56) (rl - t;) + o (33o’ + 23) (rl + 611 

Im1 = tc (b* + 4)2 [2i (4@ + 1) (tl -b) + o (5aZ - 1) (11 + f)] 

16na4 
X=-..- 

105 @z, b” (a2 + 4)a 
11 I; 1/-_-i, [=I/- (5.12) 

The remaining cam 
(5.12 P 

onents’ of tensor I1 are equal to zero in accordance with (5.2). As 
radicals in Eqs. those brauchee of the root are taken for which Re W< 0 and Rsc( 0, 
For o + 0 Eqs. (5.12) after removal of indetenninacies transform into corresponding equa- 
tions of [8], taking into account differences iu notation 

6. Motion of body with fluid. With the assumptions made, the dynamics of a 
body with fluid are described by the last Eq. of (1.6) into which it is necessary to snbsti- 
tute G1 from (4.22). Let the tensors I0 and It be known for the given shape of cavity. Vari- 
ous formulations of problema on motion of a body with fluid are possible. 

1. If the motion of the body is given A and n are known), then substituting the vector 
0 from (4.22) into Eq. (1.6) we find the moment M which is necessary for maintaining of 
the given motion of the body with fluid. 

2. Let the axis of rotation of the body 0 ty 
of the entire system parallel to axio 0x3, be t r 

which goes through the center of inertia Ot 
e main central axis of inertia of the system. 

Let ua denote through I,, the components of the tensor of inertia of the whole system J in 
the system of coordinates 0 ytyu3. The axes of these coordinates are parallel to the axes 
of system Oxtx*,(Fig. 1). hen we obtain Eqs. 

Jsj=J,=O, J*o)o=J330,e3, WQX(J.O~)=O fi=f,2> (6.1) 

It is assumed that the moment of external forces has the fans M = behi, where the qaun- 
tfty x and vector I, are given. Calculation of forced oscillations of the system is reduced 
to determination of vector n. Substituting Eqs. (4.22) and (6.1) into the last Eq. of (1.61 we 
obtain 

h(J+pI).Q+a,e,x [(J+pI).sd--.fd2] -MU (6.2) 
in this msnnar the problem has been reduced to the solution of linear inhomogeneous Eq. 

(6.2) for vector a. 
3. Let us examine the more complicated and interesting problem of natural oscillations 

of a rotating body with a fluid near a steady rotation. The moment of external forces with 
respect to point 0 t is taken as equal to zero (M T 0, the body is free) and let, as previoos- 
ly, the axis of rotation 0 y3 be the main axis of inertia of the system, i.e. Eqs. (6.1) are 
satisfied. We aabstitote d o = 0 and Eq. (3.4) for D into Eq. (6.2). assuming that x f 0 

(J + pI)sQ + ‘/aoe3 x [(J -t pI).Q-- J&J = 0 (6.3) 

The determinant of the linear homogeneous (with respect to 0) system (6.3) is set equal 
to zero and taking into accouat (6.1) and (4.22) we obtain the characteristic equation 

g11 - %~lilalt Kxz -W t&22 - Jss), p (fn - ‘/did 

X21 + %a VII - Jss), &, + ‘1cMm p (128 +'/z~fld = f(a, p, j/Y) = 0 

P&l, PIu Jss + Pf3a 
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Iii,; = Jj/; -f P/jkr /jh = /j/c” + I’YIjk’, Jjk .= J,, (/( k - I, 2, 3) (6.4) 

Here the components I,, are constant while I k o and I,,1 are functions of o depending 

on the shape of the cavity. The roots o of Eq. (4.4) determine the eigen numbers h = 200 /O 
of the problem on oscillations of a rotating body with fluid. Let us examine Eq. (6.4) in 

some cases. 
4. Let the ratio of the mass of fluid to the mass of the entire system be amall, i.e. p < 1 

(see end of Section 1). In the case of a solid body without fluid (p= 0) Eq. (6.4) is reduced 
to a quadratic Eq. 

[(J3:$ - J,,) (J,, - J,,)#-- J,,Y oz + 4 (J,,J*, - J1r2) = 0 (6.5) 

The free term of (6.5) is positive since J is a positive definite tensor. For stability of 
rotation it is necessary that u be purely imaginary and for this it is required thst 

(Jss - J,,) (Jr3 - Jar) > J1sS (6.6) 
This is a well-known condition for stability of stationary rotation of a free solid body. 

Without destroying generality the principaI central axes of inertia of the system are selec- 
ted to be axes y1 and ~3. Then 112 = 0 and condition (6.6) are reduced to the requirement 
that the moment of inertia I,, be either the largest or the smallest principal central moment 
of inertia of the system. The roots of Eq. (6.5) for I 12 = 0 are : 

%,a o = f2i (J&P iv, - J,,) v, - J,*)P (6.7) 

The roots of Eq. (6.4) for p < 1 are determined by the perturbation method. We assume 

in Eq. (6.4) 
ua = (Jr0 + pb,” (s = 1, 2) (6.8) 

Taking into account that CJ,’ is a root of the function f(cr.3 0, fi), we obtain from (6.4), 
with accuracy to small terms of higher order, 

for 0 = o,“, p = 0 (6.9) 

Derivatives in Eq. (6.9) are computed according to mles of differentiation of determin- 
ant (6.4) assuming that I,, = 0. Subsequently ua ’ is substituted from Eq. (6.7). We obtain 
corrections to 0 in the form 

ZllJZZ IzzJu 
Jn - Jaa + JII - Jaa ) + Ia- h] (s=1,2)(6.10) 

Valnes of I 
For an idea fluid (v = 0) it is necessary in Eq. (6.10) Y 

in (6.10) must be taken for u = ua”. 
to take I 

ity condition (6.6) be fulfilled, and both roots 0, 
‘5 =!jk’. Let the stabil- 

’ from (6.7) be pure y imaginary quantities. 
As follows from Eq. (3.16) in this case, 111’ and Iz9’ will be real, while the difference I ’ 

-I12O will be a purely imaginsry quantity. Consequently, corrections 8,” frcm (6.10) wil T’ 
be purely imaginary in this case. If, however, the quantities 0,’ are real, then all compo- 
nents of the tensor 1’ are also real (see Section 3) and corrections 6 ’ turn out to be real. 
In this manner the presence of a small mass of ideal fluid in the cav%y of a rotating solid 
body in the first approximation with respect to parameter p, does not change the stability 
(or lack of stability) of motion of the solid body leaving the roots of the characteristic eqna- 
tion purely imaginary (or real). 

5. Let us examine Eq. (6.4) in the case where the fluid is ideal G/ = 0) and the cavity 
has the shape of an ellipsoid (5.3). Substituting Formulaa (5.8) into Eq. (6.4) (after expsn- 
sion of the determinant and some transformations) we obtain 

A,(r” + A,@ + A, = 0 

A, = (Jas - J,,) (J,, - J,d - lIza, A, = (alB + as’) (an8 + a& al’an,‘a~ 

x I(J,, - J,,“) (J33 - Jzn”) - J,21 + 4 (J,,J,, - JII”) - 4WaaaJ33 

A, = 4 (a1r + aJa) (an2 + asa) ai-2 arl(JUOlsaO - J,**) 

J,,” = $11 - pyaaauar (ara + a&1, Jt10 = J 29 - pyn,*a8~ (aI’ + aa’)-l(6.11 I 

Here y is determined from (5.8). Quantity ] 11O 
the form 

(and analogously I azo) are presented In 

Jll“ = J II - P (Jn’ - J,,“) 
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where&’ andltt ” are introduced in (5.9). Quantities Ilk0 are components (in axes 
o,y1y2y ) of the tensor of inertia Jo of that solid body which has an equivalent body with 
a cavity fhltd with ideal flnid_ilFEaae of &rotational flow (31. We note that from the poai- 
tive definiteness of. tensor Jo and Eq. I 
v from Eq. (6.11) and aubaequently alao 

O- 1 t2 it follows that A, ) 0. It is easy to find 
Y = !& /o. For stability it is necessary that all 

roots of Eq. (6.11) be pwsly imaginary (in this paper stability is examined in the linear 
approximation). For this it is easy to see that 

&&OS &>21/A72i;; 

is necessary and sufficient (for A, >, 0). 
Taking into account Ex reaeion 

P 
(6.11) for 4 

*t’ 
the first of these conditions of stability 

coincidea with inequality 6.6) and is the atabt ity condition for rotation of a free solid 
body which is obtained when all fluid solidifies in the cavity. 

The motion of a body with an ellipsoidal cavity filled with ideal fluid hae been inveeti- 
gated by many authors using different methods (for example, [l to 31). An equation analo- 
gous to (6.11) was derived and in a number of cases analyzed in [Ill. 

Let, in particular, the system have dynamic symmetry (I tt = 12a1 f = 0) and the cav- 
ity be an ellipsoid of rotstion (a, = aa ). Then it is easy to verify that t e biquadratic Eq. It3 
(6.11) can be presented in the form 

A@ + &a* + A, = (A,@ + iA,u + A,, (d,o* - iA@ + A,) = 0 

A, = Jaa - Jn, A, = (Q + 4) a,-TJ,s - J,,? - 2Jn 

A6 = 2 (al* + a&zl~JnO (6.12) 

In [ 1 snd 2] the characteristic equation was obtained for a symmetrical top with an axi- 
aymmetrfc ellipsoida cavity filled with au ideal fluid. If in equations of papers [l and 2] 
the gravity force is set equal to zero, quadratic equations are obtained which can be shown 
to be equivalent to equations into which Eq. (6.12) is expanded. For stability it is neces- 
sary and sufficient that A, 2 + 4 A,A, > 0. 

6. In the case of fluid with low viscosity (V < 1) we apply the method of psrtwbationa 
to Eq. (6.4). Let Q ’ be some nonmultiple root of (6.4) for an ideal fluid (for v = 0). The 
root (t of (6.4) which for v < 1 fa’cloae to o ’ and the correapondfug characteriatio value is 
sought in the form 

CI = u’ + YQ, h = 2wo f ci = 200 [(u’f-* - Y *A (a’)_ EI] (6.13) 
Substituting cr from (6.13) into Eq. (6.4) and taking into account that f(a ’ , p, 0) = 0 we 

obtain, with accuracy to amall terma of higher order, in analogy to (6.9) 

af iafi 
6=- af/au for j b=d, v=o 

Actual compu~tiona are carried out for a spherical cavity of radius a. Without destroy- 
ing generality it is assumed that for j = 1, 2t 3 the axes 0.t y 
of the inertial system. Moments of inertia (6.11) of an eqarva i 

are the principal central area 
ent solid body in the given 

case are 

>.,n a T’ Jjk o = Jjt = 0 (i =#= k, i, k = 1, ,2, 3) (6.15) 

Here y. is determined by Eq. (5.10). Tensor Jo, as determined by Eq. (6.15), is the ten- 
sor of the inertfal system in which all the fluid is replaced by a point mass equal to the 
mass of fluid and located at the center 0 of the sphere. 

We note identities which follow from Eqs. (5.10) 

Ill0 - y2012,0 = I,,O + ‘/2OIl2” = - To, ZIZO - 1/26122O = Z21° + ‘/2br11° = 0 

These identities and also Eqa.. (5.2) and (5.10) and the expression for I,, in terms of 
l/k0 according to (6.15) are substituted into determinant (6.4). We obtain 

f 6 p, Y-3 = vss* + p ~~~ss’f x (6.16) 

x Jl1° + p y%(ld - ‘/a al21’) l/s f Jsa’ - J2t0) + P Y’vv12 - ‘Iza2B’) = o 

‘/aa (JllO - Jm”) + p YcY~Zd + ‘/,aT111), J2z0 4- p -vc/y(ld + ‘/2 ~1211) 

Aaramfng v = 0 in Eq. (6.16) we obtain an Eq. of the form (6.5) with exchange of I for 
I,,9 In thin manner a body with a spherical cavity filled with au ideal fluid is equiva ent to fk 
a solid body with a tensor of inertia Jo. Computing derivatives off from (6.16) we also find 
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8 from Eq. (6.14). In,analogy to (6.7) and (6.10) Tq/pbtain 
ot,e = f fk, k = 2 (J$& ) [(Jgo - Jr?) (Jar” - &“)]+ 

cosity. A low viscosity will change these root* somewhat in accordance with Eqs. (6.13), 
however, generally apeahing, the motion will remain unstable. 

More interesting is the case when J O is the lar est or 8mallest principal central mo- 
ment of inertia of the equivalent body. Ji% f en k from 6.17) is real. From the brown ineqoal- 
ity J 330< 1 t to + I zz’.for moments of inertia, the following inequality results 

Ju*Jz,~> fJss* - J,,‘f V,* - JH*) > 0 
From this we obtain on the basis of (6.17) that k > 2. Radicals in Eqs. (5.12) are comp.ated 
seiecting branchea with negative real parts. 

9= - (1 - i) m / m, t; = - (1 + i) m / )/2k (a’ = kik)(6.18) 
Here and in the following the upper and lower signs correspond to the selection of sign0 

in Eq. (6.17) for 6’. Substituting Eqs. (5.12) and (6.18) into Eqs. (6.13) and (6.17) we ob- 
tain 

(T= &ik+ 6~5, h =*I?uo (rik-1 + fi k-*6) 

BI = b (ha -f kg,) - k Vw, - f&s 4 = b Vw, - higz) + k (&a - J& 
b = Jas’ I (Juo - J,“f + Jx1’ f (Jez* - Js”1, h, = 25ks + 70 k” - 8k 

h, = 65 V -136 k* - 16, ha = 21 kb - 6k9 - 56 k, h, = 33 k’ - 28 

= )/k+ + fkq, g, = ‘f/, - Gi (k > 2) (6.19) 

From Eqs. (219) for 8 and X it follows that both eigen numbers x for the body with vir- 
cous fluid have the same real parts while their imaginary parts differ in sign. The stability 
of motion is determined by the sign of the real part &,, Le. by the sign of quantity St l 

In order to evaluate the sign of B t some supplementary inequalities are obtained. Since 
the function 

if 
t(k) from (6.19) is monotonously increasing, while g,(k) monotonously de- 

creases, we ave for k >, 2 

g, tk) >, gx (2) = fi + 1 > 2.7, 62 (k) < ga (2) = m-- i < 0.8 (6.20) 
An upper estimate is also obtained for functions gt end simple estimetes are made for 

function A, for k >, 2 from (6.19) 

g,e = 2k+2I/k”--~<<k<2ks, g, < dZk<l.S k 

h, > 25 k=, ht < 65 KL, O<h,<21 P, 0 < h, < 93p < 47 p (6.21) 

From inequalities (6.20) and (6.21) fork > 2 the following inequalities are obtained 

h,g, - kg* > h-’ (25 *2.7k - 65 ~0.8) > k” (67 k - 52) 

hsg, - h,g, < 21.0.8 Ip < 17 h+ 

h,g, - h,g, > - 47.1.5 ti > - 71 Ir’ (6.22) 
Combining the first inequality (6.22) at first with the second and then with the third in- 

equality of (6.22) we obtain 

(JWr - k,) - (&go - Qr) > I@ (56 k - 52) > 6 

trclg1 - kg,) + (iti% - h,gt) > k* (67 k - 123) > 0 (k a ‘) 
From here 

hrci - hrgr > I trsgn - kg, I > 0‘ (6.23) 
At first, let as examine the case where l35o 

Is30<fllos Js~*<Iz~~~ 
will be the smallest moment of inertia : 

It follows then from the inequality between the arithmetic and geo- 
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metric mean (k is determined from Eq. (6.17)) that 
b = Jar0 (J11° - JmO)O)-l + Jl1° (JpaO - J,O)-’ >, k (6.24) 

From inequalities (6.23) and (6.24) and Eq. (6.19) for B, it follows that 

B, > k I&g, - &rg,) - (&a - h&l > 0 
i.e. the motion is unstable. 

Let IJfO> &lo* IssO> l,sO, i.e. /JSO is the largest among the moments of inertia. 
In this case instead of (6.24) we have the inequality 

b = r,*o (Jr,” - JoaQ)-* + Jr%* ($m” - Jm*)-’ < - ic < 0 (6.25) 

From inequalities (6.23) and (6.25) it follows that 
B, d - k I@,g, - $gr) + (h&P - &)I < 8 

i.e. the motion is stable. In this msnner the rotation around the axis 0 t y3 of a free solid 
body with sphedcal cavity filled with a viscous fluid is stable if J 33o > I 1 1o and l33o > 

;:& * 
’ it is unstable if in even one of these two conditions the inequality sign is exchan- 
or the opposite one. Instability in this case in connected with the viscosity of the 

fluid and is absent for Y = 0. From Eqs. (6.15) it follows that atability conditions can be 
written asin 

f 
moments of inertia of 

whfch coinc das with known results t 
e entire system in the form / 

“I’ 
>1tt and133>112 

31. We note that above, not on y the conditions for 
stability were obtained but also the roots of the characteristic equation, in particular the 
decrements of damping, were computed. 

The suthor thanks D.E. O~ots~skif for discuaaion and formulation of the problem. 
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